On Hilbert-type Integral Operator Inequality and Application

نویسندگان

  • AIMIN YANG
  • GUANGSHENG CHEN
چکیده

In the paper, by using the way of weight functions and the theory of operators, a Hilbert-type integral operator with the homogeneous kernel of −λ-degree and its norm are considered. As for applications, two equivalent inequalities with the best constant factors and some particular norms are obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel

In this paper, by the use of the weight coefficients, the transfer formula and the technique of real analysis, an extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions and a few examples are considered.

متن کامل

On a Hardy-Hilbert-Type Inequality with a General Homogeneous Kernel

By the method of weight coefficients and techniques of real analysis, a Hardy-Hilbert-type inequality with a general homogeneous kernel and a best possible constant factor is given. The equivalent forms, the operator expressions with the norm, the reverses and some particular examples are also considered.

متن کامل

On a decomposition of Hardy--Hilbert's type inequality

In this paper, two pairs of new inequalities are given, which decompose two Hilbert-type inequalities.

متن کامل

A multidimensional discrete Hilbert-type inequality

In this paper, by using the way of weight coecients and technique of real analysis, a multidimensionaldiscrete Hilbert-type inequality with a best possible constant factor is given. The equivalentform, the operator expression with the norm are considered.

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013